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Coupling High-Resolution Earth System Models Using
Advanced Computational Technologies

Description and Objectives

Apply advanced computational technologies to the problem of coupling high-

resolution Earth system models

Combine the emerging technologies of the Earth System Modeling

Framework (ESMF), the Land Information System (LIS) and the Grid

Analysis and Display System (GrADS)/Distributed Oceanographic Data

System (DODS) and couple them to the Weather Research and Forecasting

(WRF) model and the Goddard Cumulus Ensemble (GCE) model to enable

high-resolution modeling
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Questions Examined

• Do the initial lower boundary conditions from Land

Surface Model (LSM) spin-ups enhance the modeling of

convection?

• Does higher resolution forcing employed in the spin-up

integrations improve the integration results ?

• Do different LSMs have an impact on the model’s ability

to simulate convection?

• Does the addition of higher resolution parameter data

enhance the predictability?



4Coupling High-Resolution Earth System Models Using Advanced Computational Technologies

Design of the Component Interactions Sequence
for the Coupled System

LIS-GCE LIS-WRF
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ESMF Coupling Schematic

Low Level Utilities

Fields and Grids Layer

Model Layer

Components Layer:

Gridded Components

Coupler Components

External Libraries

ESMF Infrastructure

Model 

Component

ESMF Superstructure

BLAS, MPI, NetCDF, …

ESMF Infrastructure
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Sub-component

ESMF Superstructure

BLAS, MPI, NetCDF, …

Component Coupling:

e.g., LIS-GCE

Component Coupling:

e.g., LIS-WRF
ESMF Conceptual

Design
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Structure of the LIS Framework

Kumar et al.,

2006, in

preparation.
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Overview of LIS



8Coupling High-Resolution Earth System Models Using Advanced Computational Technologies

Features Added for LIS-WRF Coupling

• Support for multiple projection types
including lambert conformal, polar
stereographic, mercator, and lat/lon grids

• Incorporation of the CLM2 land surface
model

• Support for nested grids

• Increased resolution parameter data sets
such as AVHRR and MODIS collection 3
LAI and Greenness Fraction

• Added Goddard Cumulus Ensemble Model
Microphysics
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Performance Measures
Impact of ESMF on Coupled Performance
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What are Spin-ups?

• Long term integrations (from 2-17 years) using LIS
offline forced by observations and employing various
parameter data

• WRFSI is the Weather Research and Forecast Model
(WRF) Standard Initialization

STIV  Observations (4km gridded)          LISWRF with LIS initial conditions              WRFSI soils climatology

24 hour Accumulated Precipitation (mm)
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Experimental Design & Notation

WRFSI=WRF Standard Initialization

GOES = Geostationary Operational Environmental Satellite;

STAGEIV = NCEP’s Radar + raingauge national radar mosaic

STATSGO = USDA State Soils Geographic Database

FAO = UN Food and Agricultural Organization

GDAS = NCEP Global Data Assimilation System

NCEP = National Centers for Environmental Prediction

N/AN/AN/AN/AWRFSI

1kmSTATSGO1/8th degree, 1 hourGOES +

STAGEIV

F12

5 minuteFAO1/8th degree, 1 hourGOES +

STAGEIV

F2

1kmSTATSGO2.5 degree, 3 hourGDASF1

5 minuteFAO2.5 degree, 3 hourGDASF0

Soil ResolutionSoilsForcing ResolutionForcingSimulation

 Symbol
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Spin-Up Domain and Mesonet Stations

•500x500 Horizontal

Grid Points

•Integrations ran for 15

years ending June 26,

2002

•Forcing Evaluated

against the Oklahoma

mesonet for the period

May 1st through June

12th, 2002

•Nearly 190,000

observations processed
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GDAS and NLDAS Performance Statistics

0.940.92272.30271.94255.0417.2616.9079.86133.7Net Radiation

(W/m2)

0.930.612.071.591.950.12-0.362.605.75Precipitation

(mm)

0.980.96973.74972.55973.100.64-0.553.234.48Pressure (mb)

0.760.754.954.334.480.47-0.141.851.75Wind Speed

(m/s at

10m)

0.960.9222.4721.5021.451.02-0.062.101.78Temperature

(C at 2m)

0.950.9012.2012.9013.99-1.79-1.092.161.98Mixing Ratio

(g/kg at

2m)

r NLDASr GDASNLDAS

Average

GDAS

Average
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Average

BIAS

NLDAS

BIAS

GDAS
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NLDAS

RMSE
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Variable
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Precipitation Forcing

PDF for the IHOP Study Period
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minimized

•Stage IV 4km resolution is nearly implemented
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Other Findings from Spin-Up Evaluation

• GDAS forcing lacked the temporal
resolution to simulate rapid diurnal changes
in surface fluxes of latent and sensible heat

• Increased soil data resolution led to a
strong correlation with the observed
variance in soil temperature and moisture

• The NOAH soil model exhibited large
diurnal variations in temperature and
moisture throughout the depth of the soil
column
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Application of Spin-Ups and Nesting to a Case Day

Configuration of the triple nested domain used in the coupled

LIS-WRF simulations
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The Case Day - June 12th, 2002

• Employing the IHOP analysis of Grams et al.,
2004 a case day, June 12-13th, 2002 was
selected that displayed Discontinuous Areal
(DA) properties in the CRA analysis

• The convection for this day was broken, and
exhibited back-building

• The day also represented a mesoscale
modelers’ “Golden Day” properties; light
winds and generally clear skies until the
onset of convection



18Coupling High-Resolution Earth System Models Using Advanced Computational Technologies

The Onset of Convection, June 12, 2002 at 2130GMT
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Summary of Coupled LISWRF Integrations

All used the NOAH LSM

3 Nested integrations using LIS spin-Ups and WRSI requiring
50Gb RAM and 150Gb of storage:

• NLDAS forcing+STATSGO Soil+Lin Microphysics

• NLDAS forcing+STATSGO Soil+GCE Microphysics

• WRFSI

5 Non-nested integrations using various forcing/parameter
data:

1kmSTATSGO1/8th degree, 1 hourGOES +

STAGEIV

F12

5 minuteFAO1/8th degree, 1 hourGOES +

STAGEIV

F2

1kmSTATSGO2.5 degree, 3 hourGDASF1

5 minuteFAO2.5 degree, 3 hourGDASF0

N/AN/AN/AN/AWRFSI

Soil

Resolution

SoilsForcing ResolutionForcingSimulation

 Symbol
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Soil Moisture 10cm, 9km nest
June 12, 2002

WRFSI LIS Spinup

Domain consisted of a 9km mesh with 400x271 horizontal points with a 3km inner nest with 403x403 points,

and a 1km mesh with 505x505 grid points. All grids had 45 vertical levels from the surface up to 20km

Non-nested domains only employed the inner mesh

LIS Spinup = 17 years starting from 1985 using bias-corrected atmospheric reanalysis data until 2000. From

2000 onwards inner nests forcing data was NLDAS (GOES radiation & Stage IV precipitation), outer nest

data from GDAS (NCEP Global Data Assimilation System).

1 km global vegetation from University of Maryland for vegetation-based parameters in Noah.

Soil  hydraulic properties from Food and Agricultural Organization (FAO) database for outer nest, 1 km

State Soil Geographic Database (STATSGO) soils database for inner nests.
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Soil Temperature 10cm, 9km nest
June 12, 2002

WRFSI LIS Spinup

LIS Spinup = 17 years starting from 1985 using bias-corrected atmospheric reanalysis data until 2000. From

2000 onwards inner nests forcing data was NLDAS (GOES radiation & Stage IV precipitation), outer nest

data from GDAS (NCEP Global Data Assimilation System).

1 km global vegetation from University of Maryland for vegetation-based parameters in Noah.

Soil  hydraulic properties from Food and Agricultural Organization (FAO) database for outer nest, 1 km

State Soil Geographic Database (STATSGO) soils database for inner nests.
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Soil Moisture 10cm, 3km nest
June 12, 2002

WRFSI LIS Spinup

LIS Spinup = 17 years starting from 1985 using bias-corrected atmospheric reanalysis data until 2000. From

2000 onwards inner nests forcing data was NLDAS (GOES radiation & Stage IV precipitation), outer nest

data from GDAS (NCEP Global Data Assimilation System).

1 km global vegetation from University of Maryland for vegetation-based parameters in Noah.

Soil  hydraulic properties from Food and Agricultural Organization (FAO) database for outer nest, 1 km

State Soil Geographic Database (STATSGO) soils database for inner nests.
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Soil Temperature 10cm, 3km nest
June 12, 2002

WRFSI LIS Spinup

LIS Spinup = 17 years starting from 1985 using bias-corrected atmospheric reanalysis data until 2000. From

2000 onwards inner nests forcing data was NLDAS (GOES radiation & Stage IV precipitation), outer nest

data from GDAS (NCEP Global Data Assimilation System).

1 km global vegetation from University of Maryland for vegetation-based parameters in Noah.

Soil  hydraulic properties from Food and Agricultural Organization (FAO) database for outer nest, 1 km

State Soil Geographic Database (STATSGO) soils database for inner nests.
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Soil Moisture 10cm, 1km nest
June 12, 2002

WRFSI LIS Spinup

LIS Spinup = 17 years starting from 1985 using bias-corrected atmospheric reanalysis data until 2000. From

2000 onwards inner nests forcing data was NLDAS (GOES radiation & Stage IV precipitation), outer nest

data from GDAS (NCEP Global Data Assimilation System).

1 km global vegetation from University of Maryland for vegetation-based parameters in Noah.

Soil  hydraulic properties from Food and Agricultural Organization (FAO) database for outer nest, 1 km

State Soil Geographic Database (STATSGO) soils database for inner nests.
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Soil Temperature 10cm, 1km nest
June 12, 2002

WRFSI LIS Spinup

LIS Spinup = 17 years starting from 1985 using bias-corrected atmospheric reanalysis data until 2000. From

2000 onwards inner nests forcing data was NLDAS (GOES radiation & Stage IV precipitation), outer nest

data from GDAS (NCEP Global Data Assimilation System).

1 km global vegetation from University of Maryland for vegetation-based parameters in Noah.

Soil  hydraulic properties from Food and Agricultural Organization (FAO) database for outer nest, 1 km

State Soil Geographic Database (STATSGO) soils database for inner nests.
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Effect of LIS (Non-Nested Domain)
on PRCP FCST, June 12, 2002

ObservedWRFSIF12

F2F1F0

Cumulative Rainfall (mm)
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Effect of LIS (Nested Domain)
on PRCP FCST, June 12, 2002

 Observed                                                                           WRFSI

LIS+LIN

LIS+GCE



28Coupling High-Resolution Earth System Models Using Advanced Computational Technologies

Integrated Precipitation Comparison
(June 12, 2002)

Domain Integrated Precipitation vs. Time

0

100000

200000

300000

400000

1 3 5 7 9 11 13 15 17 19

Time (from June 12 18GMT, 0.5hr intervals)

In
te

g
ra

te
d

 P
re

c
ip

it
a

ti
o

n
 

(m
m

)

GCE LIN WRFSI Stage IV

Domain Integrated Precipitation vs. Time

0

100000

200000

300000

400000

1 3 5 7 9 11 13 15 17 19

Time (from June 12 18GMT, 0.5hr intervals)

In
te

g
ra

te
d

 P
re

c
ip

it
a

ti
o

n
 (

m
m

)

F0 F1 F2 F12 WRFSI no nest Stage IV

Nested Domain

Non-Nested Domain



29Coupling High-Resolution Earth System Models Using Advanced Computational Technologies

Rain Rate PDF Non-Nested Domain
(June 12, 2002)

Rainfall Rate (mm/hr) PDF
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Rain Rate PDF Nested Domain
 (June 12, 2002)

Rainfall Rate (mm/hr) PDF
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Conclusions from Integrations and Spin-Up Evaluation

• Precipitation forcing needs increased resolution for
high resolution spin-ups

• The NOAH LSM seems rather insensitive to initial
soil conditions

• The GCE microphysics results show better
agreement with observations in the nested
simulations

• LIN microphysics showed a tendency to over-predict
precipitation in the spin-up integrations. Analysis
suggests this is a result of the drier and hotter soil
conditions causing convective temperature to be
reached earlier

• The nesting improves the temporal agreement with
the observations. It was found that this was due to
a fairly deep upper level trough that was moving
into the finer meshes influencing the cloud layer
mean wind by adding a westerly component

• NOAH greenness fraction has a 1 degree resolution
and vegetation dominates the soils
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Can we get the right answer?

• Final set of Spin-Ups were conducted using
NLDAS+STATSGO+AVHRR for the NOAH
and CLM2 LSMs

• Again, these were evaluated against the
OK Mesonet

• CLM2 reduced simulated temperatures
biases by a factor of 2, soil moisture bias
by a factor of 3

• Soil Temperature Correlation Coefficients
increased from 0.70 to 0.80 at 10cm, and
from 0.45 to 0.64 at 30cm depths

• Soil Moisture Correlations increased from
0.45 to 0.64 at 10cm, 0.44 to 0.69 at
25cm, and 0.39 to 0.68 at 75cm
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 CLM simulates energy and moisture exchanges between land and atmosphere

 Energy exchanges include radiative transfer, turbulent fluxes, and heat storage in soil

 These are controlled in part by the hydrologic cycle

 CLM has a detailed representation of the hydrologic cycle including: interception of

water by leaves; infiltration and runoff; multi-layer snow accumulation and melt; 10-

layer soil water; and partitioning of latent heat into evaporation of intercepted water,

soil evaporation, and transpiration

Bonan (2002) Ecological Climatology (Cambridge University Press)
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Now we can begin to answer whether better spin-ups
produce better coupled integration results

•The distributions are quite similar and show

excellent agreement with observations over all
bins

•NOAH largely over-predicts at heavy

precipitation rates

PDF of Precipitation Rates (mm/hr)
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Comparison of CLM and NOAH

Domain Averaged Precipitation vs Time
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Comparison of CLM and NOAH

STIV

CLM

NOAH

Precipitation Rates

(mm/hr) at 20GMT
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Comparison of CLM and NOAH

ST IV

CLM

NOAH

Precipitation Rates

(mm/hr) at 21GMT
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Comparison of CLM and NOAH

CLM

ST IV

NOAH

Same as before at

22GMT
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What does this look like?
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CLM and NOAH Comparison

• A detailed analysis of the Moisture Flux
Convergence indicates that the CLM model
produced temporal and spatial location of
maxmima consistent with the observations

• These locations were coincident with
related to the partitioning of the surface
energy budget and the latent, sensible, and
ground heat flux partitioning

• Drier and hotter soil moisture states led to
NOAH integrations realizing earlier
convective temperatures, producing an
earlier and stronger onset of convection
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Conclusions

• Do the initial lower boundary conditions from Land Surface Model
(LSM) spin-ups enhance the modeling of convection?

The results indicate this is dependent on the LSM employed in the
integration

• Does higher resolution forcing employed in the spin-up
integrations improve the integration results ?

This was found to be inconclusive. We believe that the incorporation
of hi-res precipitation forcing will add to the ability of Spin-Up
integrations to improve predictibility

• Do different LSMs have an impact on the model’s ability to
simulate convection?

In this case it does.

• Does the addition of higher resolution parameter data enhance
the predictability?

In the case of NOAH and hi-res soils cases this was not the case.
When the CLM LSM was used in conjunction with AVHRR and
MODIS derived LAI slight improvements were seen. As previously
mentioned hi-res precipitation could potentially enhance the
effects of parameter resolution.



42Coupling High-Resolution Earth System Models Using Advanced Computational Technologies

More Conclusions and Follow-On Recommendations

Conclusions

• LIS has been successfully coupled to two atmospheric model

components, WRF and GCE.

• The coupling adds minimal computational overhead.

• The coupled system allows scientists to study the impact of

input data, microphysical and radiative transfer processes,

and boundary conditions on water and energy cycles.

Follow-On Recommendations

• Advancement to TRL7 would be the equivalent of using WRF-

LIS pseudo-operationally. To continue this advancement

would require an integrated 3-5 year project involving

several organizations involved in LIS/WRF/GCE and ESMF:

• E.g., GSFC, NOAA/NCEP, National Center for

Atmospheric Research, Air Force Weather Agency
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Long Term GCE Results
 Surface Fluxes of May 25-Jun 13, 2002

ARM surface

fluxes (solid)

LIS fluxes

(dashed

lines).

Thick lines

represent

daily average

values for no

diurnal

variation.

ARM fluxes LIS fluxes

Zeng et al., JAS, 2006
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IHOP Long Term GCE Results
 Center: (36.61N, 97.49W) Radius: 1.82o
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Long Term GCE Results
Cloud Fraction Evaluation

 

 

 

Observed

GCE - ARM

GCE - LIS
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Performance Measures: WRF/LIS and WRF/GCE
Performance scaling for the coupled systems
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County, GEST Center, Baltimore, Maryland, USA.



49Coupling High-Resolution Earth System Models Using Advanced Computational Technologies

Radiation Coupling Time Step
Experimental Design

In this experiment we employed the Weather Research and

Forecasting (WRF) model coupled to the Land Information

System (LIS) (LISWRF). A call to the radiation

parameterization nearly triples the computational time

required.

•Homogeneous initialization of meteorology for a DRY and

WET case

•Noah Land Surface Model (LSM) with actual vegetation,

homogeneous soil moisture/temperature

•100x100x41 grid points at 1km spacing in the horizontal

and stretched in the vertical with a time step of 6s

•Four 24 hour integrations for each WET/DRY case with

radiation called every 6, 18, 60, and 600s
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WRF-LIS Precipitation vs. Radiation Coupling Time
Step

6 Seconds=Every 1 18 Seconds=Every 3

60 Seconds=Every 10 600 Seconds=Every 100

Total accumulated 24-hour precipitation (mm) for update frequencies at every (6 seconds),

every 3 (18 seconds), every 10 (60 seconds), and every 100 (600 seconds) time steps.

Eastman et al., GRL, 2006, submitted.
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Rain Rate PDF vs.Radiation Coupling Time Step
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The WRF developers web site has now changed the users

guide to suggest that a minimum of 10 timesteps be used

for radiation updates
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Computational Overhead of Increased
Radiation Updates

Cloudy Day - Scaling with different radiation timesteps 
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Performance Measures: Computational
Overhead of Increased Radiation Updates

6second radiation timestep
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60second radiation timestep
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The slope of the clear/cloudy scaling curves is similar, indicating that the
communication overhead is minimal, compared to the computational overhead. The
computational overhead for cloudy days is higher compared to the clear days.
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Project Highlights

TRL Advancement

• TRL3 technologies of LIS/WRF/GCE advanced to TRL5.

Recognition

• LIS won NASA 2005 Software of the Year Award.

Technology Transfer to NOAA and DoD

• LIS is currently being benchmarked for potential operational

use at NOAA’s National Centers for Environmental

Prediction, as well as the U.S. Air Force Weather Agency.

Benchmarking on Columbia

• The LIS-WRF-GCE code has been successfully ported to

the Columbia supercomputer.  Test cases were conducted to

ensure consistent behavior.
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Schedule Overview

• The CONUS-scale run requires approximately 50 GB of memory and runs in near-real time (requires

approximately 22 hours for a day’s simulation, using 128 processors). The near real-time is significant since

the queues on halem have a maximum 12 hour limit. Since the simulations with 128 processors run in real time,

we only need one restart, instead of 2 or more if a smaller number of processors are employed.

• The general_big queue that supports large processor runs were extremely helpful. However, the main

bottleneck was the disk storage limitations.

• Using 30 minute output frequency, and 3 hour restart frequency, the CONUS LIS-WRF simulation requires

(for a day of simulation): 68GB of WRF output + 27GB of LIS output + 37GB of WRF restart (at every 3

hours) + 3GB of LIS restart (at every 3 hours) ~ = 140 GB total (Assuming the old restart files are wiped out).

• The /scr space on halem, where the runs are typically conducted, has a quota limit of 145GB. So we can barely

squeeze one run, with some monitoring and data cleanup.

• All the output is currently stored on the DMF on halem, but the data transfer back and forth requires

approximately 10 hours. Hence a significant time is spent in data transfers. Similar latency was observed when

the data was transferred to our local systems.

• Our group has a dedicated storage of 1.4TB on halem. Almost 80% of it is filled up with all the background high

resolution data that LIS needs. This leaves us very little room to store any output, albeit temporarily.

Lessons Learned from Halem
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AppendixAppendix
LIS Key MilestonesLIS Key Milestones

Complete

• Aug. 2002:  Install LIS Cluster at GSFC
– 200 nodes, 112 GB  total memory, 22 TB

total disk

• Mar. 2003:  First code improvement (LIS2.0)
– Implement global LIS at 5 km resolution

• May 2004:  Second code improvement (LIS3.0)
– Implement global LIS at 1 km resolution

• Jul. 2004:  Interoperability demonstration
(LIS3.1)
– Implement LIS as a partially** ESMF-

compliant land model component

• Dec. 2004:  Customer delivery (LIS4.0)
– Deliver LIS to customers at Goddard

Modeling and Assimilation Office (GMAO),
National Centers for Environmental
Prediction (NCEP), Princeton, Center for
Ocean-Land-Atmosphere Studies (COLA),
Colorado State University (CSU),
University of Arizona, etc.**July 2004 Milestone renegotiated due to delays in ESMF project
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